
1

Genetic Algorithms Applied to 1-D Cellular
Automata

Matthew Aasted Jeffrey DeCew

Franklin W. Olin College of Engineering
Discrete Math

December 17, 2005

Anthony Roldan

Abstract—In this project, we investigate the use of genetic al-
gorithms to evolve specific rulesets governing one-dimensional
cellular automata. We outline the basic concepts of cellular au-
tomata and genetic algorithms, explain in depth why we selected
the algorithms which we chose, and outline the basics of our
implementation. We discuss our success in developing the final
state of automata by evolving rulesets to solve specific problems
given randomized initial conditions. Finally, we reflect on the
ability of a ruleset to determine the steady state in spite of ran-
dom initial environments, and discuss future opportunities for
research.

I. I NTRODUCTION

The goal of this project was to evolve rulesets to govern
Cellular Automata. Cellular automata are exciting because
they hold the possibility of emergent complex behavior on a
global scale being born from simple interactions on the local
level. Genetic algorithms are a current hot area of investiga-
tion in the computer science community due to their potential
for solving problems that are difficult for a human to analyze.

In this paper, we outline the basic ideas behind cellular au-
tomata and genetic algorithms, move on explain how we ap-
ply them in this project specifically, then offer detailed anal-
ysis of the results we obtained from experimenting with CA
ruleset evolution and possible future directions for research
in this field.

II. CELLULAR AUTOMATA : THE BASICS

A. Definition

Cellular automata (CA) are environments consisting of dis-
crete cells placed around a uniform grid. The states of the
cells in a given timestep are governed by some set of rules
applied to the previous time step.

Cells in the grid are the most basic component of CA. Es-
sentially, a cell is simply a location which has a state. The
number of states is variable, as is the geometry of the cell.
That is to say, the grid can ben-dimensional and any num-
ber of cells can be adjacent. For example, a one-dimensional
line of cells, a two-dimensional honeycomb-esque hexagonal
lattice, or a three-dimensional grouping of cubes would all be
valid grids for a CA.

Time is discrete in CA. The states of the cells in timestept
are determined by the states of the cells int−1. The next state
of a particular cell is determined by its current state and the

state of its neighbors – not necessarily only adjacent cells, but
all cells defined to be in its neighborhood. The neighborhood
consists of only adjacent cells in many CAs, but could be
restricted to only the cells that can be connected with straight
instead of diagonal lines in a 2D CA, for example.

B. Uses and Intrigue

The most famous CA is Conway’s Game of Life, which
first appeared in a 1970 issue of Scientific American and
whose ruleset makes for unpredictable and interesting pat-
terns.

The Game of Life takes place on an infinite two-
dimensional grid, where cells can have only two states –
“alive” and “dead” (or “on” and “off”).

The Game of Life’s rules are totalistic – that is to say, they
all deal with the total number of cells that are adjacent to the
current cell that are on and not with specific arrangements of
cells. The rules are simple: Any live cell with fewer than two
neighbors dies, as if of loneliness. Any live cell with more
than three neighbors dies as if of overcrowding, and any dead
cell with three neighbors comes to life. Live cells with two or
three neighbors do not change their state and continue to live.

The Game of Life, like any CA “game,” is not really a
game, so to speak – all future states of the Game are defined
by the initial conditions, as is true of CAs in general. Spe-
cial initial arrangements of cells have been discovered that
can continuously translate across the grid (“gliders”), or ones
which continuously create gliders (“guns”). The Game of
Life makes a convenient starting point for explorations into
CA, because it is both simple to understand but holds nearly
infinite possibilities.

1) Applications: CAs do not currently have any widely-
used applications, but provide a valuable modelling tool for
simple biological systems; certain seashells, for example,
have CA-like patterns on their shells. They have been pro-
posed for usage in cryptography, since it is easy to generate
future states from a CA if you know the ruleset, but very hard
to run a CA in reverse to determine an initial condition. This
could be used in a public-key crypto system although no such
implementations are currently on the market.

C. Considerations in Implementations

The iterative, discrete nature of CAs lends itself to straight-
forward implementation on a computer system. One large



2

consideration is how to deal with boundary conditions in
CAs. An infinite grid of cells, as occurs in idealized CAs,
all of whom change state on every timestep is not possible to
simulate on a computer with finite resources. In some situ-
ations, such as the Game of Life, where cells bordered only
by cells of a certain state remain in that state (cells far away
from any living cells will continue to remain dead), an infinite
grid can be implemented, but in many situations, it cannot be.
In these cases, it is necessary to define spatial boundary con-
ditions. Circular (or toroidal, for 2D CAs) grids are often
used to avoid this problem, where the end of a row or column
of cells simply wraps around to the opposite side. Another
possibility is fixed boundary conditions, where one simply
defines boundary cells to always behave as if they were a cer-
tain state.

Another consideration is the complexity of the ruleset. Ob-
viously, a ruleset has to be small enough that the next state of
a cell can be computed without extensive searching. For a
non-totalistic CA in two dimensions looking out three levels,
there are 36 cells whose states have to be described to deter-
mine the next state of the current cell. For just two states,
that means236 or over 68 billion definitions one would have
to make in order to account for every possible combination.
For this reason, smaller neighborhoods or totalistic CAs are
generally favored over more complicated ones when it comes
to computer implementation.

D. Ruleset Encodings

Rulesets are fundamental to CA implementations. As such,
having a compact form to describe them is wildly convenient.
To this end, notice that onlySn characters are required to de-
scribe all possible situations for a CA rule, whereS is the
number of states andn is the number of cells in the neigh-
borhood, including the cell itself. Many of the most common
CAs are two-state, since their binary nature is especially well-
suited to computer implementations. In these binary imple-
mentations, it is conventional to represent the ruleset as a bit
string, which is then converted to decimal for compactness.

For example, for a one-dimensional CA with a neighbor-
hood of only one cell in either direction, a bit string of length
three describes a possibility for the next state. The first bit
represents the state (1 or 0) of the cell to the left, the sec-
ond bit represents the state of the current cell, and the third
bit represents the state of the cell to the right. That means
that23 or 8 bits (conveniently, one byte) are required to de-
scribe every possible state. In the final string, the value of bit
i (where0 ≤ i < 8) represents the resulting state of the cur-
rent cell based on the condition represented byi as translated
in binary.

Consider the ruleset represented by the bit string
10101011. That translates into the following final states:

bit (bin) bit (dec) resulting cell state
000 0 1
001 1 1
010 2 0
011 3 1
100 4 0
101 5 1
110 6 0
111 7 1

This method of representing rulesets as strings is conven-
tional for cases with more than two states or a neighborhood
of size more than three as well. In those cases, the string of
lengthSn is converted from a baseS number to a decimal
number for convenience. Either way, this makes for a reason-
ably compact notation which can fully describe any set of CA
rules.

III. G ENETIC ALGORITHMS: THE BASICS

Genetic algorithms are a method of finding extrema within
a single or multivariable space. Under usual conditions, this
means finding either maxima or minima. Typically, they are
used to explore spaces which are either very large or spaces in
which it would be difficult to find extrema by analytical meth-
ods. Genetic algorithms have less trouble with local extrema
and are fairly resilient; however, genetic algorithms alone find
the true local extrema relatively infrequently without special
adaptation of the GA. This is because they easily find a so-
lution which is near the extrema, from which it is possible to
use other methods, such as hill climbing algorithms, to find
the true extrema.

To find extrema, the genetic algorithm needs only to be
able to evaluate for fitness and somehow randomly alter solu-
tions within the solution space. It is convenient to use genetic
algorithms because, despite their rather high computational
overhead, it is typically simple to develop a fitness criteria to
a problem. Genetic Algorithms can sidestep the need to do
analysis of the space, and typically can find a good solution
to a problem within a relatively short amount of time. [2]

A. Definition

A generation is the set of solutions which are considered at
a given time step. The first generation is the input to the Ge-
netic Algorithm; typical methods of finding a first generation
include random generation, seeding with some hand-picked
value and mutating it to get the rest, or simply manually enter-
ing a solution set. Meanwhile, fitness is defined as the quality
of a given solution in solving the originally posed problem.
It is the strongest requirement on a genetic algorithm; fitness
must be evaluable at each generation for the genetic algorithm
to be able to weed out the weak and identify the strong to be
selected for breeding. This typically presupposes an inter-
pretation step between the evolvable encoding and the fitness
evaluation, as this solves many of the problems associated
with encoding evolution.

Breeding typically consists of taking the strong members
of a generation and either performing mutation or crossover



3

on them. Mutation, in the case of a bit string, means a prob-
abilistic flipping of random bits to arrive at a new solution.
Crossover is typically taking two strong members A and B,
choosing a random point along them, and creating a new
specimen by concatenating the portion of A before the point
with the portion of B after the point. If the solution space has
been encoded in such a way that it has multiple chromosomes,
this crossover may happen on a single or multiple chromo-
somes, or may even consist of swapping chromosomes. No-
tice that, if one were to encode their solutions in such a way
that they wrote working chromosomes which are not func-
tionally divisible, crossover could be used by swapping sets
of chromosomes without breaking the chromosomes up inter-
nally.

The encoding of the elements of the search space is fre-
quently non-trivial. The reason for this is that the encoding
needs to intelligently deal with random mutation, crossover,
or both. This is relatively difficult, especially if the evalu-
ation requires that the specimen meet strict criteria. Fortu-
nately, most of these problems can be solved by writing a
clever interpretation of the encoding such that garbage in a
solution is ignored. Alternately, a well-encoded search space
can make the development of uninterpretable data within the
encoding impossible because all possible combinations result
in an evaluable solution.

B. Uses and Intrigue

Genetic algorithms are very popular because frequently the
encoding and evaluation of fitness can be done in an intuitive
way on spaces where analytical solutions are non-intuitive or
impossible. When you can state your problem as a maxi-
mization (even a binary maximization), you’re typically al-
most immediately able to formulate it into a fitness criteria.
This makes them very attractive to researchers and designers
because it means that the human computation time is much
lower for the same results; since digital computation is very
cheap, this means reduced costs for research. Furthermore,
the appeal to biology inherent in both name and function
give genetic algorithms remarkable buzzword properties and
a similar ability to create novel solutions which a human be-
ing would be unlikely to produce.

IV. T HE CELLULAR AUTOMATA USED IN THIS PROJECT

In order to begin our project, we had to decide on a particu-
lar form of cellular automata so that we could do an in-depth
and relatively concrete investigation into the automata and,
more importantly, into genetic algorithms. In order to make
a good decision about our cellular automata, we had to come
up with some criteria against which we could compare our
possibilities.

A. What We Needed From our Automata

1) The Grid: Because the main investigation of our
project was meant to be in the area of genetic algorithms
on cellular automata and not a pure study of obscure cellu-
lar automata, we decided that any excessively complicating

factors like using triangular, hexagonal, or other non-square
grids would be an immense misappropriation of resources in
the computer implementation.

To enforce an environment of finite size, we decided that
we would use either a circular or toroidal environment for
boundary conditions. We felt that static boundary cells could
seriously skew results (by providing two cells who always
have the same neighbors) while an infinite, unbounded envi-
ronment would restrict the types of CA rules we could work
with, virtually forcing us into only totalistic rules.

2) Complexity: The first consideration we had was that
in order to run any trial-and-error type search on cellular au-
tomata, we would have to be running these simulations re-
peatedly. The speed of computers renders this a non-issue
for isolated tests, but could become an issue if we selected a
particularly computationally intensive CA. In order to avoid
problems with extremely slow simulations that could take
minutes or hours for us to run, we wanted our cellular au-
tomata to be relatively quick to calculate.

3) Versatility: The next consideration for our CA was that
we wanted it to be capable of taking as many distinct forms
as possible. In other words, the distinction between totalistic
and non-totalistic cellular automata was important to us. We
decided that using a totalistic automata was too restricting and
would reduce the number of actual solutions we could find.
We wanted our cellular automata to take – or at least have the
ability to take – wild and asymmetric forms.

4) Encoding: While the encoding of our CA falls more
into the realm of the implementation of our GA, we decided
that we had to make certain restrictions anyway. First of all,
we wanted to ensure that the encoding we used for our CA
was computationally feasible. In other words, we had to have
a relatively compact form for describing the ruleset of our
cellular automata. Thus any cellular automata ruleset which
couldn’t be described with a number of reasonable size would
be too complex for an investigative project into genetic algo-
rithms.

5) Visualization Considerations:A major consideration
in choosing our CA implementation is how easy it is to show
our results. Time-based visualizations, while impressive in
their own right, are difficult for us to think about on a large
scale. We wanted our results to be visualizable in such a way
that we wouldn’t have to use video in order to convey the
information about any given trial.

6) Expandability: Because we knew that we were fallible
and that we might make a poor choice when selecting our au-
tomata, we were looking for automata that could be expand-
able so that if our original form was too simple we could eas-
ily expand our implementation to a more complicated form
without too much lost time. In other words, we decided it
would be better to err on the side of caution and pick a less
complicated CA over a more complicated one.

B. Possible Ways to Meet our Needs

1) Non-Totalistic 2-D Binary Automata: The first CA
type that we looked at was 2-D, because they have an aes-
thetic appeal that drew our attention. When talking about 2-
D automata, one possible example which we were discussing



4

was the idea that a 2-D CA might be evolved that could take
a vertical line and cause it to break apart and re-form itself
after translating. We figured that this would be an incredibly
good demonstration of a functioning genetic algorithm. It is
immediately clear, however, that any CA like this is asym-
metric. But because of the very nature of totalistic CAs, they
are symmetrical. Thus to maximize the options for evolvable
traits, totalistic CAs were out.

2) Totalistic 2-D Binary Automata:We started doing enu-
meration of the possible ways to define a ruleset in a 2-D bi-
nary automata using just the 8 local neighbors and itself. The
number of possible states for 9 binary cells is29 or 512. That
means that a binary string of length 512 would be required to
describe a single ruleset. We decided that this was too com-
plicated and too large of an encoding for the scope of our
project.

3) Non-Totalistic 1-D Binary Automata:Given our disap-
proval of the large encoding of 2-D Automata and the sym-
metry of totalistic automata, this option becomes the logical
next step. We found that to describe a ruleset for this option
we would only need a binary string of length23 or 8. This
seemed to be a good option given that this allows for28 or
256 possible rulesets, which is a relatively large search space
for a GA. Also, because it is 1-D, it would be very fast com-
putationally, and because it is non-totalistic, it would give use
a highly versatile form. This form had the immense benefit
that it would be relatively easy once we completed our initial
revision of code, to re-formulate as a ternary or quaternary au-
tomata. In these cases the rulesets are ternary strings of length
33 or 27 for the ternary form and quaternary strings which are
43 or 64 digits long for the quaternary form. While we knew
it was unlikely that we would go to quaternary forms, it was
comforting to know it was there. After close scrutiny, this
looked like an acceptable choice.

4) Totalistic 1-D Non-Binary Automata: Even though
non-totalistic 1-D binary automata seemed to be a great av-
enue for exploration, we wanted to look at a few more options
before going on. The next feasible choice was non-binary, but
totalistic automata. We immediately recognized that these
had the great advantage of being easily scaled to any com-
plexity. Unfortunately, a quaternary totalistic automata with
only the local three cells would have 12 possible states, and
4 possible results for each state. This means there are only
48 possible rulesets. This is incredibly low, and because the
scaling is onlySn, it would require a huge number of states
to make a sufficiently complicated automata. Using 16 cell
states would result in 765 possible rulesets. After a brief dis-
cussion we decided that even though this form could make for
interesting GA analysis, it began to lose the discrete quality
of the cell states and would sacrifice the elegant simplicity of
CA.

C. The Choice and Visualization

Because it had so many advantages, the 1-D binary non-
totalistic cellular automata was the final choice. It had every-
thing we wanted, even scalability, and was not going to cause
us immense trouble in implementation. An added benefit of

this CA choice was that we had a great possibility for visu-
alization. In a few papers we found on the subject, 1-D CAs
were shown as images, where a row in the image was a snap-
shot of the CA in time. The rows were organized so that as
you scan down the image you can see the way the automata
changes. This means that state number increases down the
rows, and each row represents a complete state of the system.
Therefore, it is very easy to understand at a glance what the
automata did. We felt that this has immense benefits for our
qualitative analysis of any given automata and enhances our
ability to explain automata to other people.

V. THE GENETIC ALGORITHM USED IN THIS PROJECT

A. What we Needed From our GA

For our binary cellular automata, we were exploring a sam-
ple space with28 discrete solutions. This means the space
was relatively small. Therefore, we had loose requirements
for our Genetic Algorithm; essentially, it needed to converge
relatively quickly on a solution and not be very computation-
ally intensive to implement. We wanted our encoding to be
such that it was at least an onto map to the search space.
We spent a fair quantity of time discussing the possible algo-
rithms and encodings we could use. Some very heated argu-
ments occurred over the strengths and weaknesses of various
encodings. We decided, given our inexperience in the field
and inability to run time-consuming computer simulations,
that for our problem a one-to-one correspondence would be
easiest to implement without sacrificing too much.

B. Possible Ways to Meet our Needs

Much of the focus of us picking a GA was developing an
encoding of a ruleset that allowed for easy or novel muta-
tions without requiring excessive computational complexity
or storage space. We evaluated possible evolution algorithms
based on the encoding under consideration and its potential
for either mutation- or crossover-based evolution.

1) DNA-Inspired Encodings:Our first hope was to im-
plement an encoding that was DNA-inspired – one that used
a minimum of symbols (like DNA’s A, C, G, and T) in a va-
riety of multi-symbol patterns to represent information. This
could provide for evolution methods similar to those observed
in the biological world.

Two solutions with high fitness values could be reproduced
sexually, with crossing-over of genes in such a way that the
two solutions could pass both coding and non-coding sec-
tions. There would be special “start” and “stop” symbol
groupings (or “codons”, as they are known in the biologi-
cal world) that would allow us to code for specific rules, then
other codons that would allow for exceptions or inert regions.

The allure of such a pattern would be to emulate the mu-
tations that can take place in biological systems–the removal
of a stop codon resulting in a very complicated rule, the re-
moval of a single symbol skewing the following codons to
create drastic changes, and that sort of thing. This sounded
very exciting to us, and would require great concentration and
effort on our part in formulating an interpreter adequate to the
problem.



5

Ultimately, however, emulating the natural world was im-
practical. While compelling as a method to describe the rules
applied in the complex 2-D CA we were initially considering,
when working in a solution space of only 256 possible solu-
tions, we decided it would be more trouble than it would be
worth. Furthermore, it would be computationally impractical,
as we anticipate that we would need a much larger number of
fitness evaluations and mutations to develop an adequate solu-
tion, even in our sample space. Nonetheless, a DNA-inspired
encoding could be a valuable and interesting area of investi-
gation for complicated CA rulesets or for a variety of other
problems.

2) Operator-Based Encodings:Similar to DNA-inspired
encodings, an operator-based encoding has certain symbols
that code for rules and exceptions – and would provide a con-
venient way to express all possible conditions via a symbol
that codes for an “else” condition. For example, we could
have a string like ‘i001t0i011t1e0’, which cold expand into
an if-then-else structure that would read “If the neighborhood
is 001, then the final bit is zero. If the neighborhood is 011,
then the resulting bit is one. Otherwise, the resulting bit is
zero.”

This provides for the flexibility of a DNA-inspired encod-
ing and similar scalability when straightforward string-based
encoding becomes too large (as in the case of the 2D neigh-
borhood of size 36), the difference being that single symbols,
instead of codons, are used to represent a condition. This
promises a more compact encoding at the expense of bio-
logical realism and an increased difficulty in implementing
a sexual reproduction algorithm. Again, however, operator-
based encodings suffered from the same issue of being too
complicated for applying towards simpler CA problems, and
we ultimately decided against them given the simpler CA we
planned to work with.

C. Our GA Method

1) Encoding: The encoding we finally settled on was the
conventional encoding mentioned in the introduction to cel-
lular automata earlier in this paper. That gave us an encoding
of only 23 or 8 bit length which fully expressed all possible
options.

2) Mutations and Evolution:Our final GA was mutation-
based. The first generation is based on a “seed” ruleset which
is mutated eight times iteratively to produce a population of
size 9, meaning that we mutate the seed, save the result, then
mutatethat resultagain, save the result, etc. This gives us an
initial population with enough diversity to be meaningful but
all still related to the initial seed such that specifying an initial
seed which is close or far away from an expected solution can
impact time required to generate that solution.

Between generations, as you can see in Figure 1, we se-
lect the three best (“most fit”) rulesets, keep them in the next
generation, and also mutate each of them twice to produce a
new population still of size nine. The six less fit rulesets are
discarded.

Copy:

Mutate by 1 bit:

(1) Evaluate for fitness, sort, kill off weak

(2) Copy and mutate the strong

(3) Repeat (1) with new generation

Fig. 1. Diagram of our algorithm’s evolution process. Essentially, between
generations the top three specimens from the previous generation are each
copied and mutated twice to produce the new generation.

VI. M ETHOD OF IMPLEMENTATION

We implemented our algorithms in PHP running on Jeff’s
server. Although PHP was not the ideal choice for computa-
tional speed, it afforded us a high ease of programming and
more importantly, an easy web interface such that any of us
or others could access the server and experiment with CA and
GAs given only a web browser. This significantly enhanced
our ability to demonstrate the program to others, and since
demonstrating our work to classmates was a major goal, we
thought the trade of speed for versatility was worthwhile.

PHP also provides object-oriented support, which we were
able to effectively leverage to expedite development times.
Our main class for running evolution, for example, is easily
extensible with new definitions of fitness to allow for exper-
imentation by changing our evolution goal with a minimal
rewriting of code. Likewise, our ruleset class and environ-
ment class, the two of which combined define the behavior
of a CA from one timestep to the next, are also fully extensi-
ble such that we could rewrite them to support more complex
CAs supporting two-dimensions or ternary instead of binary
states without requiring a rewrite of other code.

VII. D EFINING THE PROBLEMS TOSOLVE

A. Proof of Concept: Blackout

The first problem we attempted to solve using our GA was
the simple one of finding a ruleset that would black out the
final state of all cells given any initial conditions. To a hu-
man, the ruleset that will produce this result is obvious -
‘11111111’ - which translates to no matter what the state of
the neighborhood or current cell is, make it so the next state
is black. We thought this was an appropriate problem for test-
ing because it is very obvious by human inspection whether
or not the test criteria is working or not.



6

B. Proof of Concept: Whiteout

The flip-side to blackout is whiteout, in which the final
state of all cells is zero given any input condition. Again,
the ideal solution to this is obvious - ‘00000000’ - so it is
valuable as another simple test.

C. Grayout

The first more interesting problem we decided to solve was
the idea of creating as grey of an automata as possible. This
problem was interesting because it was very easy to rank an
automata state at a given time as having even distribution of
black and white, while at the same time it is relatively diffi-
cult to come up with an ideal solution through inspection of
the problem. However, despite the ruleset which results in
this not being obvious, it is obvious to humans (and to our
algorithm) whether or not it works in the final stage, mak-
ing this a convenient test in which we anticipated non-trivial
results.

D. Static

Another interesting case was the case of creating a static
ruleset – one in which the final result is the same as the initial
condition.

The ideal solution to this ruleset is one in which only the
cell’s current state is looked at and its neighbors do not influ-
ence future states. This way, the state of any given cell will
remain static throughout time.

E. Tetris Pattern

The problem we attempted to solve here was not intention-
ally to find a geometric pattern as the name implies, but rather
a particular binary string we often saw when running random
rulesets with random initial conditions.

We seek to maximize the pattern ‘110100’ in the final row
of our CA tests, which coincidentally generally comes up
when the geometric pattern formed by a 2D representation
appears like L-shaped Tetris blocks.

F. Diagonal Pattern

This problem was similar to the Tetris pattern problem, ex-
cept we are now instead looking for the patterns ‘0110’ or
‘1001.’ Again, this pattern does not necessarily imply diago-
nal lines in a 2D representation, but that happened to crop up
during random tests.

G. Binary Result Attempt: Density

The most complicated behavior we attempted to create was
to solve a density problem. We can define density of an au-
tomata state (ρ) as the number of cells at a given timestep
whose value is one. We hoped to evolve CA rulesets that
would allow us to ask the question ”Is the density of the ini-
tial condition greater thanx?”

If the answer was yes, andρ > x, the final state of the CA
would be all black (truth value 1), whereas otherwise the final
state would be all white (truth value 0).

VIII. D EVELOPING FITNESS

As stated before, genetic algorithms do not tell the sys-
tem where to end up, but rather use an immediate feedback
system to decide where to go. The typical fitness feedback
system measures how well an evolved ruleset fits certain cri-
teria on a 1-dimensional scale. The algorithm then uses this
information to proceed. In order to simplify our algorithm,
we decided to uniformly define our fitness to be a scale from
0 to 1.

A. Requirements of a Fitness

We required a fitness to be able to be expressed quanti-
tatively and to be algorithmically determinable. Though it
would be possible for us to act as the fitness measurers by
hand, we decided this was impractical; furthermore, quan-
titative fitness analysis allows algorithmic determinations of
strength. Since our goal was not to make ”Genetic Algo-
rithms: the Board Game”, we decided that the more we could
automate, the better.

B. Our Fitness Algorithms

The fitness algorithm depends on the problem we wish to
solve with the CA ruleset. Each problem we tacked has a spe-
cific method we devised to determine how fit the final result
is.

To describe these fitness-measuring algorithms, we will de-
fineF (a) as the fitness of a final state,C as the total number
of cells, andCw as the number of white cells andCb as the
number of back cells. We will also define a cell at positionx
and timet ascx,t

1) Fitness: Blackout/Whiteout:For the blackout or white-
out condition, the determination of fitness is simplyF (a) =
cb

C or cw

C , respectively. This way, the most fit blackout or
whiteout condition whereF (a) = 1 is one in which all cells
are entirely one color.

2) Fitness: Grayout:The grayout fitness test is to look for
alternating white and black cells. A counter is incremented
every time a cell after the current cell is a different color, (by
checking if then the final value of this counter is divided by
C.

3) Fitness: Static: The static condition simply checks the
every cellcx,tf

and compares it to the cellcx,0. If they match,
a counter is incremented and then the result is divided byC
to normalize it to a value between zero and one.

4) Fitness: Patterns: The fitness test for patterns, either
Tetris blocks or diagonals, is to test for the desired pattern
beginning at every cell, and to increment a counter if it is
found. In the end, divide the counter value byC

p , wherep is
the length of the pattern.

5) Fitness: Binary Result Density:The fitness test for
density in theρ = 0.5 case that we checked is to first de-
termine the density of the initial condition, and determine if
the end result should be a binary 1 or 0 (more or less than 0.5
density, respectively). It then performs the same test as used
in the blackout or whiteout fitness tests to see how much of
the final result is black or white, and then squares the result
to increase the reward for better solutions.



7

IX. RESULTS

A. Blackout (and Whiteout)

The blackout test was wildly successful. It has generated
acceptable results in 4 generations or less almost every time.
Usually the initial population seeding produces either a to-
tally successful result or one so close that only one or two
generations are needed to make it successful. However, the
interesting thing about our results is that they very rarely pro-
duced the ideal solution. (Figure 2) The reason for this short-
coming is that when it comes to blackout, there are multiple
imperfect solutions that work for almost any initial condition.
The problem is that we have a limited set of initial conditions
and if those do not include the special cases (like all white)
then some rulesets (like rule 127) will not have the desired
result.

Fig. 2. A successful but non-ideal blackout. Rule # 159

Fig. 3. The local maximum rule in our algorithm for blackout. Rule #128

Another anomaly that was discovered on one test of the al-
gorithm was when we started with a group of rulesets among
which the best result was rule 128. This is an imperfect
whiteout rule with drastic failure because all white neighbor-
hoods result in a black cell. This means that the final result
for most configurations is about 50/50. Thus this has a fit-
ness of roughly 50% for blackout. Unfortunately, for most
initial conditions, most 1-bit mutations perform significantly
worse than 50% for blackout. Thus, when the GA ran, and
128 (Figure 3) was the best rule in the first generation, it be-
came stuck at that local maximum, because mutations were

not great enough to find a better solution. This is not the only
case where we found false maxima, but it is the best example
of a case that is so far from the ideal solution and with such a
clear limit to its effectiveness.

Whiteout went almost identically to blackout, in a proba-
bilistically likely way, except that it was, of course, in reverse.

B. Grayout

Grayout was our second major success. Though a perfect
solution doesn’t likely exist, we found good solutions within
10 generations on most trials. One particular solution (Fig-
ure 4) works by cutting long sections of solid color at the
ends and replacing the ends with alternating color. Another
good solution (Figure 5) cuts off at only one side of long sec-
tions and breaks it down so that eventually the image is com-
posed of all white columns, all black columns, and alternat-
ing black-white columns. These result in some remarkable
images.

Fig. 4. This grayout rule effectively brings even highly uneven images very
near gray. Rule #156

Fig. 5. This grayout rule brings highly uneven images toward gray, and
settles into a pattern. Rule #56

C. Static

Static was also successful. Since there is an ideal solution,
we frequently evolved to that. (Figure 7) However, we found
some solutions we didn’t anticipate. The first one of these



8

Fig. 6. The alternating solution to the static problem. Rule #204

Fig. 7. The ideal solution to the static problem. Rule #51

took advantage of our even number of time steps, and simply
alternated the cells every time step. That is, all white cells
turned black and all black, white. Another unexpected group
of results happened because of our design choices. Since we
decided on a circular environment and our width of our envi-
ronment was equal to its length (time steps = number of cells),
a rule which simply shifted all cells to the left every time or
another which did the same to the right would show up as a
solution. A variant on this was alternating black and white
as it did this. (Figure 6) To suppress these results, we sim-
ply changed the dimensions, and then we got the one which
doesn’t change each time.

D. Tetris Pattern

The Tetris pattern was fairly successful, though we don’t
believe a perfect solution exists. Solutions results in a pattern
which has a diagonal flow of L-shaped blocks (Figure 8). We
found the time-based patterns which result from end-game
fitness requirements remarkable, as it allowed us to produce
fascinating designs in the environment whilst controlling only
the ruleset.

E. Diagonal Pattern

Like the Tetris pattern, we found that the results of this test
resulted in time-based patterns – again, they were diagonals
for this one (Figure 9). Our solutions were fairly good, but
the all resulted in the pattern of diagonals.

Fig. 8. A good solution to the Tetris pattern. Rule #188

Fig. 9. A strong solution to the Diagonal pattern. Rule #142

F. Density

With density, our attempts to make a CA answer a question
failed. Unfortunately, our tests and others [1] have shown
that with small, simple rulesets this is apparently impossi-
ble. With this question, however, we realized that the density
of our random environments was normally distributed with a
mean of 50%; the environment was random, but the density
is the mean of 50 random bits. Therefore, density was being
poorly tested; however, a redesign using uniformly random
density has yielded the same results as before.

X. CONCLUSION

From our strongly positive results, we believe that it is true
that the steady state of the environment is determined nearly
entirely by the ruleset and is only minimally affected by the
initial environment. We found that genetic algorithms are ef-
fective tools in finding good solutions to the problems we
posed, though we found with density that they cannot solve
problems which are unsolvable within the search space. Since
the initial environment has so little effect on many of the rule-
sets we evolved, we can conclude that many of them would
be ill-suited for answering questions about the initial environ-
ment.

A. Possible Further Investigations

The topic of using GAs to evolve CA rulesets is very broad,
and this field certainly is one in which there could be any



9

number of interesting and worthwhile investigations.
Expanding on the work we completed in this project to in-

clude more cell states or larger neighborhoods is an obvious
extension that could yield extremely interesting results at the
cost of increased computational complexity. As it stands now,
given that our solution space of 256 possible rulesets is very
small, the advantages of using GA as a search tool for ideal
solutions is debatable, since obtaining results from a random
or exhaustive search of the entire space is not computationally
infeasible nor difficult to implement.

Adding another dimension and expanding our same project
to two dimensions would also have interesting implications
and would greatly expand the search space. Also interest-
ing would be to attempt to evolve a CA rule (probably one
in two dimensions, since we doubt one dimension could have
the needed complexity) capable of carrying out basic compu-
tation tasks (addition, subtraction, multiplication), although
this is considerably more complex in scope, specifically when
it comes to determining the fitness of solutions.

In any of these cases, we would most likely want to re-
work our software implementation as PHP is not meant for
large-scale computations and can become difficult to work
with when it is required to process large amounts of data.

REFERENCES

[1] J. Crutchfield, M. Mitchell, “The Evolution of Emergent Com-
putation,” [Online Document] Proceedings of the National
Academy of Sciences 1995, [2005 Dec], Available at HTTP:
http://www.santafe.edu/projects/evca/Papers/EvEmComp.pdf

[2] University of Illinois at Urbana-Champaign Genetic Al-
gorithms Lab, [Online Directory] Available at HTTP:
http://www-illigal.ge.uiuc.edu/index.php3


